Constrained geometric simulation of diffusive motion in proteins.
نویسندگان
چکیده
We describe a new computational method, FRODA (framework rigidity optimized dynamic algorithm), for exploring the internal mobility of proteins. The rigid regions in the protein are first determined, and then replaced by ghost templates which are used to guide the movements of the atoms in the protein. Using random moves, the available conformational phase space of a 100 residue protein can be well explored in approximately 10-100 min of computer time using a single processor. All of the covalent, hydrophobic and hydrogen bond constraints are maintained, and van der Waals overlaps are avoided, throughout the simulation. We illustrate the results of a FRODA simulation on barnase, and show that good agreement is obtained with nuclear magnetic resonance experiments. We additionally show how FRODA can be used to find a pathway from one conformation to another. This directed dynamics is illustrated with the protein dihydrofolate reductase.
منابع مشابه
Mechanical behaviour of motion for the two-dimensional monolayer system
In this paper we study the dynamics of the 2D-motion of a particle of monolayer. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint sub...
متن کاملA Normal Mode-Based Geometric Simulation Approach for Exploring Biologically Relevant Conformational Transitions in Proteins
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constr...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملStochastic Finite Fault Modeling for the 16 September 1978 Tabas, Iran, Earthquake
The main objective of this study is estimating acceleration time history of 16 September 1978 Tabas earthquake incorporating the seismological/geological source-path and site model parameters by using finite-fault simulation approach. The method generalizes the stochastic ground-motion simulation technique, developed for point sources, to the case of finite faults. It subdivides the fault plane...
متن کاملKinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical biology
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2005